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To understand the coordination modes and the solution structure of 5-amino-1,10-phenanthroline
(5-NH2-phen), the coordination reaction between peroxovanadium(V) complex [OV(O2)2(D2O)]

−/
[OV(O2)2(HOD)]

− and 5-NH2-phen has been investigated by multinuclear (1H, 13C, and 51V)
magnetic resonance with variable temperature NMR, COSY, and HSQC. The experimental results
indicate a pair of isomers in solution, which are attributed to different coordination modes between
vanadium and 5-NH2-phen. The solution structures of these newly formed peroxovanadate species
were proposed based on experimental NMR information and confirmed by theoretical calculations.
Moreover, the results of density functional calculations indicate that solvation plays an important
role in these interactions.
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1. Introduction

Vanadium complexes, particularly vanadate(V) and more recently heteroligand peroxido-
vanadate(V) complexes (pVs), have attracted attention because of their implication in
many biological processes and therapeutic applications as the inhibitors of cancerous
tumor growth, insulin mimetics, etc. [1–6]. Therefore, coordination chemistry and biolog-
ical mechanism of vanadium compounds are of increasing interest. For example, coordi-
nation reactions between peroxovanadate complexes and a series of amino acids or
peptides through NMR spectroscopic methods were explored by Tracey and co-workers
[7]. A new series of vanadium complexes containing imidazole-like ligands have been
prepared by Crans’ group [8]. Kanamori and co-workers studied the physiological effects
of peroxidovanadate complexes and their results indicate that both the toxicity and the
physiological effects of pVs can be controlled by selecting an appropriate ancillary
ligand [9]. Three supramolecular oxovanadium complexes containing oxalate have been
prepared and characterized by Xing’s group, who studied the catalytic bromination activ-
ity for conversion of phenol red to bromophenol blue at pH 5.8 [10]. Shan and co-
workers have synthesized two vanadium-amino acid hydroxylamido complexes and
explored their PTP1B inhibitory activities [11]. Several peroxidovanadate complexes con-
taining two bidentate heteroligands were used to study DNA damage induction and anti-
proliferative activity by Andrezálová’s group [12]. Adão and co-workers reported the
synthesis and characterization of several vanadate complexes containing amino alcohol-
derived reduced Schiff base ligands, which can be catalysts for asymmetric sulfoxidation
of thioanisole [13]. Similarly, coordination interactions between peroxovanadate com-
plexes and organic ligands were explored through spectroscopic investigations in our
previous study [14].

Ligands containing the 1,10-phenanthroline unit, such as 5-nitro-1,10-phenanthroline,
5-methyl-1,10-phenanthroline, and 5,6-dimethyl-1,10-phenanthroline, are important building
blocks and have been used to form many transition metal complexes [15]. Studies indicate
that 5-amino-1,10-phenanthroline (5-NH2-phen) could coordinate to metal ions such as
Ag+, Ru2+, Mn2+, Fe2+, Pt2+, Cu2+, Pd2+, and Ir3+ [16]. Therefore, in this work, the interac-
tion system NH4VO3/H2O2/5-NH2-phen was also studied using multinuclear (1H, 13C, and
51V) magnetic resonance, variable temperature NMR, COSY, and HSQC. Theoretical
calculations were performed to provide a reasonable explanation for the reaction system
and the 13C NMR peak assignment of the newly formed peroxovanadate complexes.
Through combined use of these methods, solution structures and coordination modes of all
species in the interaction system could be determined and a better understanding of the
coordination reaction was achieved.

2. Experimental

2.1. Spectroscopies

All spectra were recorded on a Bruker AV-II 500MHz NMR spectrometer. DSS (3-(trimeth-
ylsilyl)-propanesulfonic acid sodium salt) was used as an internal reference for 1H and 13C
chemical shifts. The 51V chemical shift was measured relative to the external standard
VOCl3 with upfield shifts considered as negative.
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2.2. Materials and preparations

D2O, H2O2, NaCl, NH4VO3, and 5-NH2-phen (shown in scheme 1) were commercial prod-
ucts (Sinopharm Chemical Reagent Co., Ltd.) used without purification. The ionic medium
was chosen to represent the physiological condition, 0.15 M/L NaCl/D2O solution in all
NMR experiments. To form the ternary system of NH4VO3/H2O2/5-NH2-phen, NH4VO3,
and H2O2 were first mixed in D2O to produce [OV(O2)2(D2O)]

−/[OV(O2)2(HOD)]
− (bpV)

followed by addition of the ligand.

2.3. Computational method

The geometries of the complexes were optimized using the B3P86 method [17–20]. The
Wadt and Hay core-valence effective core potential [21] was used for the metal center (13
explicit electrons for neutral V) with the valence double zeta contraction of the basis
functions (denoted as Lanl2dz in Gaussian [22]). For O, N, C, and H, the standard 6–31 +
G* basis sets developed by Hariharan and Pople were used [23]. The solvation energy and
the solvation effects of the chemical shieldings were calculated using polarizable continuum
models at each optimized gas phase geometry [24, 25]. Vibrational frequencies were
calculated to ensure that each minimum is a true local minimum (only real frequencies). All
calculations were carried out with the Gaussian 03 program suite [22].

3. Results and discussion

3.1. 51V NMR studies on the coordination reaction

The starting sample is a mixture of NH4VO3 and H2O2 with 1 : 5 molar ratio in D2O
solution (0.1 M/L vanadate concentration). Its 51V NMR spectrum has a peak at −692 ppm,
shown in figure 1, which was assigned to the peroxovanadate species bpV according to
previous reports [14]. After 5-NH2-phen was added to the bpV solution, a pair of peaks
appeared at −744 and −748 ppm, assigned to [OV(O2)2(5-NH2-phen)]

− (Isomers A and B).
Its intensity increases with increasing quantity of 5-NH2-phen (from 0 to 0.5, 1, and finally

(a) 5-NH2-phen/bpV=0 

Isomer B Isomer A 

(b) 5-NH2-phen/bpV=0.5 

(c) 5-NH2-phen/bpV=1 

(d) 5-NH2-phen/bpV=1.2 

Figure 1. 51V NMR spectra for the interaction system NH4VO3/H2O2/5-NH2-phen. The total concentration of
vanadate species was 0.1M/L and the bpV refers to [OV(O2)2(D2O)]

−/[OV(O2)2(HOD)]
−. Peaks of the newly

formed [OV(O2)2(5-NH2-phen)]
− species are indicated by arrows.
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1.2 equivalents) before reaching a maximum, as shown in figure 1(a)–(d). Moreover, with
the addition of 5-NH2-phen, the peak at −744 or −748 ppm hardly moves. When the molar
ratio between 5-NH2-phen and bpV reached 1.2 : 1, it was not possible to observe the peak
of bpV in the 51V NMR spectrum anymore.

To explore the influence of temperature on the coordination equilibrium, variable temper-
ature 51V NMR spectra were used to study the coordination reaction system between bpV
and 5-NH2-phen from 15 to 40 °C. The experimental results shown in figure 2 indicate: (1)
with increasing temperature all the peaks in the spectra move to low field. The chemical
shift of bpV moves about 4.2 ppm every 10 °C and that of Isomers A or B move about 3.2
or 3.1 ppm every 10 °C, respectively. (2) With increasing temperature, the quantity of the
[OV(O2)2(5-NH2-phen)]

− decreases and converts into bpV. At the same time, the ratio
between Isomers A and B reduces (1 : 1.25 at 15 °C and 1 : 1.5 at 40 °C). This implies that
with increasing temperature, besides [OV(O2)2(5-NH2-phen)]

− gradually converting back to
bpV, Isomer A also converts into Isomer B.

Figure 2. Variable temperature 51V NMR spectra of the coordination reaction system between bpV and 5-NH2-
phen with a 1 : 1 molar ratio in aqueous solution.

Table 1. NMR data for the bpV and 5-NH2-phen coordination reaction system with a 1 : 1 molar ratio.

Species

Chemical shifts

1H (ppm) 13C (ppm)

[OV(O)2(5-NH2-
phen)]−

(Isomer A)

6.12(s, 1H), 7.13(dd, J = 8.0, 4.6 Hz, 1H), 7.49(dd,
J = 8.3, 5.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.86(d,
J = 4.6 Hz, 1H); 8.08(d, J = 8.3 Hz, 1H), 9.43(d, J =

5.0 Hz, 1H)

153.8, 144.0, 142.2, 140.3, 136.0,
134.3, 134.2, 129.7, 124.4, 123.6,

122.6, 105.3

[OV(O)2(5-NH2-
phen)]−

(Isomer B)

5.94(s, 1H), 7.28–7.35(m, 2H), 7.55(d, J = 8.0 Hz,
1H), 7.94(d, J = 8.2 Hz, 1H), 8.14(d, J = 4.2 Hz, 1H),

9.14(d, J = 4.6 Hz, 1H)

150.0, 145.6, 141.2, 140.9, 138.8,
137.1, 131.6, 131.2, 130.7, 124.5,

123.6, 103.6
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3.2. Assignments of 1H and 13C NMR data
1H and 13C NMR spectral data for the interaction system of bpV (0.1 M/L) and 5-NH2-phen
in sodium chloride deuterium oxide solution are listed in table 1.

For 5-NH2-phen, there are two groups of peaks in every 1H and 13C NMR spectrum.
One group was assigned to Isomer A, the other to Isomer B. According to the assignments
of the 1H and 13C NMR signals of the bpV-5-NH2-phen coordination reaction system, the
NMR signals can also be assigned through the COSY and HSQC spectra, which are
displayed in figure 3. Based on the chemical shifts and/or the relative areas of the 1H, 13C,
and 51V peaks, we suggest that the newly formed [OV(O2)2L]

− (L = 5-NH2-phen) is seven
coordinate. According to NMR or X-ray diffraction, these N,N′-chelating bihetero-aromatic
ligands should form the seven coordinate [OV(O2)2L]

− (L = 5-NH2-phen) as exemplified by
[OV(O2)2(py-im)]−, [OV(O2)2(pprd)]

−, or [OV(O2)2(2-NH2-pprd)]
− [14(a–c)].

A 

A 

B 

B 

A 
A B 

B 

Figure 3. COSY (left) and HSQC (right) spectra of the coordination reaction system between bpV and 5-NH2-
phen with a 1 : 1 molar ratio in aqueous solution. A or B indicates the cross peaks of the Isomers A or B.

Figure 4. The structures of Isomer A (left) and Isomer B (right).
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3.3. Theoretical study on the reaction products

The NMR spectra of the coordination reaction indicated that Isomers A and B are seven
coordinate. The bpV-5-NH2-phen coordination reaction system was explored by density
functional calculations. The structures of the newly formed species were optimized using
the B3P86 method. Compared to the free energy, one isomer is 0.73 kcal/M more stable
than the other. Based on the NMR results, Isomer B is the main product. Therefore, their
structures are shown in figure 4. Based on the DFT calculations, the important bond
distances of Isomers A and B are listed in table 2.

According to the data in table 2, the bond length variance is within the range of that
reported for biperoxovanadate complexes [14, 26]. Compared to typical bond distances in
different peroxovanadate species, the V=O or V–O bond lengths are typically found for a
double bond between V and O and are within the range observed in similar geometries such
as those of [OV(O2)2(py-im)]− or [OV(O2)2(2-NH2-pprd)]

− [14(b, c)]. The V–Operoxido bond
lengths (1.858−1.882 Å) are also within the range of the normal V–Operoxido bond distances
reported in [OV(O2)2(pprd)]

− and [OV(O2)2(py-im)]− [14(c), 26]. The lengths of the
(O–O)peroxido bonds are 1.421−1.422 Å, similar to the corresponding values in [OV
(O2)2(py-im)]− [26]. The bond lengths for both V–Nequatorial (2.194 Å for Isomer A, 2.191
Å for Isomer B) and V–Naxial (2.433 Å for Isomer A, 2.416 Å for Isomer B) are in
agreement with the corresponding values reported for other peroxidovanadate complexes
such as [OV(O2)2(bipy)]

−, [OV(O2)2(pprd)]
−, and [OV(O2)2(py-im)]− [14(b, c), 26]. Shorter

V–N bond lengths in Isomer B may indicate that Isomer B is more stable than Isomer A.
The reactivity of 5-NH2-phen in solution depends on the intrinsic bonding strength between
[OV(O2)2]

− and 5-NH2-phen and solvation effects. The free energies of the two reactions
studied here are:

Scheme 1. Structure of 5-NH2-phen.

Table 2. Selected bond lengths for Isomers A and B as well as those for other biperoxovanadate complexes.

Isomer A Isomer B bpV(pprd) bpV(2-NH2-pprd) bpV(py-im) bpV(bipy)

V=O 1.604 1.603 1.611 1.606 1.614 1.619
V–Operoxido(trans) 1.858 1.861 1.895 1.882 1.891 1.883

1.878 1.879 1.880
V–Operoxido(cis) 1.881 1.882 1.887 1.912 1.918 1.911

1.901 1.899 1.909
(O–O)peroxido 1.422 1.421 1.472 1.473 1.462 1.471

1.465 1.449 1.465
V–Nequatorial 2.194 2.191 2.142 2.128 2.102 2.149
V–Naxial 2.433 2.416 2.332 2.400 2.356 2.288
Ref. This work [14c] [14c] [14b] [26]
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5-NH2-phenþ OV O2ð Þ2 H2Oð Þ� �� �! OV O2ð Þ2 5-NH2-phenð Þ� �� ðIsomer AÞ þ H2O

(1)

DG ð298 KÞ ¼ 11.15 kcal/M (in gas phase) and� 6.73 (in solution)

5-NH2-phenþ OV O2ð Þ2 H2Oð Þ� �� �! ½OV O2ð Þ2ð5-NH2-phenÞ�� ðIsomer BÞ þ H2O

(2)

DG ð298 KÞ ¼ 10.14 kcal/M (in gas phase) and� 7.46 (in solution)

These results indicate that the reactions are unfavorable in the gas phase but thermodynami-
cally favorable in solution. The free energy changes for these two reactions resulting from
solvation effects are 17.88 and 17.60 kcal/M, respectively. Comparison of the free energies
of reactions (1) and (2) in solution shows that:

DGðreaction 2Þ\DGðreaction 1Þ

This order is in agreement with the relative affinity between 5-NH2-phen and bpV
observed experimentally.

4. Conclusion

Multinuclear NMR spectroscopy and density functional calculations were employed to
study the formation of coordination complexes between biperoxovanadate [OV
(O2)2(D2O)]

−/[OV(O2)2(HOD)]
− and 5-NH2-phen. The NMR experiments indicate a pair of

isomers in solution, which are due to the different types of coordination for 5-NH2-phen.
The solution structures of Isomers A and B were proposed based on NMR experimental
information and confirmed by the theoretical calculations. The density functional calcula-
tions indicate solvation effects play an important role in these interactions. Similarly, the
peroxovanadium(V) complex and bisubstituted pyridine reaction systems were also reported
previously by NMR measurements along with density functional calculations. Both the
solvent and the substitution effect of ligands affected the coordination equilibrium [14(d)].
Due to the amino groups being far from the metal center in 5-NH2-phen, the solvation
mainly affects the coordination reaction equilibrium. Therefore, the ratio between Isomers
A and B is determined by the free energies of reactions (1) and (2) in solution.
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